
 Software Quality Mortgage

 1 of 2

Software Quality Mortgage
by Jason Cohen on September 8, 2008

Quick software releases have long-term costs. Stakeholders
and engineers alike must be prepared to repay the mortgage
known as “tech debt.”

Your code is a mess. Years of squeezing in “must-have”
features for big customers have stretched the code be-
yond its original design. Core modules are riddled with
landmines; we’re afraid to make any changes, even with
unit tests. Tacit assumptions shared by the two founders
aren’t obvious to the next ten hires.

When companies are new and unknown, still seeking
their niche, the most important thing is to get the soft-
ware out the door fast, bugs and all.

It’s the right thing for the company and the right thing
for the software, but there comes a day when your em-
phasis shifts from “time-to-market” to reducing tech sup-
port calls and not pissing off tens of thousands of existing
users with a dud release.

But now you have all this crappy code.

I call this phenomenon the “Quality Mortgage.” The anal-
ogy to a home mortgage is apt.

A responsible, hard-working person cannot afford to pur-
chase a home outright and therefore enters into debt. If
shippable, salable software is the house you want today,
your debt is the quality and maintainability of your code.
Sure you could build a close-enough-to-bug-free applica-
tion if given ten years to work on it, but you’re taking out
a mortgage to build v1.0 in six months.

But eventually you have to pay back the debt. With in-
terest. You pay interest in the form of bugs. Bugs every-
where, many preventable had you given time to have
unit tests, good design, manual tests, and use-cases. And
fixing those surface bugs doesn’t fix the underlying prob-
lems in the code. This is perfectly analogous to those first
years of the mortgage where you’re paying interest with-
out reducing the principal. But this is still the right choice
at first—fix the most heinous bugs and keep going.

Over time you can pay back the principal, slowly. You can
refactor one file while adding a feature. You can add
complete unit test coverage for a handful of core meth-
ods. You can write a manual test plan for a particularly
complex dialog box. This is all good! But at this rate it’s
still going to take ten years to pay it back.

Or maybe you’ll never pay it back. Because unlike a
house your software is constantly expanding with new
features and reused for purposes beyond its original con-
ception. Without fixing the underlying mess or the
process that brought you that mess, you’ll never catch up.
It’s more like an interest-only mortgage.

At some point you can’t tolerate this anymore. It’s time to
pay down the principal in earnest. But this requires allo-
cating time for major rework.

Winning the right to refactor can be tough politically, es-
pecially with non-technical stakeholders. Here’s how to
combat the common arguments against spending time
refactoring:

Clean-up is invisible to users; we need to add new
features.
The bugs constantly produced by messy code are visi-
ble to users too. Time spent fixing those bugs could
have been spent adding features. The longer we stay
in quality debt, the more time it takes to add each
new feature.

https://longform.asmartbear.com/design/
https://longform.asmartbear.com/icp-ideal-customer-persona/
https://longform.asmartbear.com/product-market-fit-formula/
https://www.onstartups.com/tabid/3339/bid/5659/startup-business-strategy-for-the-simple-minded.aspx?utm_source=longform.asmartbear.com&utm_campaign=longform.asmartbear.com&utm_medium=post
http://www.joelonsoftware.com/articles/fog0000000014.html?utm_source=longform.asmartbear.com&utm_campaign=longform.asmartbear.com&utm_medium=post
https://longform.asmartbear.com/product-market-fit/
http://www.joelonsoftware.com/articles/fog0000000017.html?utm_source=longform.asmartbear.com&utm_campaign=longform.asmartbear.com&utm_medium=post

 Software Quality Mortgage

 2 of 2

We don’t have time for clean-up.
You’d rather spend your time fixing bugs generated by
the problem rather than fixing the problem? That’s
like whacking weeds every weekend instead of pulling
them up by the roots. Prevention is sixteen times
more valuable than cure.

“An ounce of prevention is worth a pound of cure."—Ben
Franklin

Developers got themselves into this mess; they
should get themselves out of it on their own time.
Had developers not gotten releases out the door as
fast as they did, had they not responded so swiftly to
early adopter feedback, even when the product mor-
phed into a beast quite different from its original con-

ception, we wouldn’t have our current customers and
revenue. We’d be working for another company, not
complaining about the software we built.

Attention CEO’s: Finger-pointing impedes resolution.
Instead, challenge your developers to reduce bug re-
ports. This is easily measured, so you can track time
versus results. Remember, developers prefer imple-
menting new features to fixing bugs, so if they’re beg-
ging for time to fix bugs, it’s serious.

A fine line separates debt as a lever for acceleration and
an insurmountable drag. The quality mortgage is a neces-
sary evil in early software development, despite its even-
tual problems. Just plan on paying it back.

P.S. After writing this I found Martin Fowler making the
same point.

Printed from: A Smart Bear
https://longform.asmartbear.com/software-quality-mortgage/
© 2007-2024 Jason Cohen @asmartbear

1

1

http://www.martinfowler.com/bliki/TechnicalDebt.html?utm_source=longform.asmartbear.com&utm_campaign=longform.asmartbear.com&utm_medium=post
https://longform.asmartbear.com/software-quality-mortgage/
https://twitter.com/intent/user?screen_name=asmartbear

