
 Your customers hate MVPs. Make a SLC instead.

 1 of 3

Your customers hate MVPs. Make a SLC instead.
by Jason Cohen on August 22, 2017

“MVP” implies a selfish process, abusing customers so you
can “learn.” Instead, make the first version Simple,
Loveable, and Complete.

Product teams have been repeating the MVP (Minimum
Viable Product) mantra for a decade now, without re-
evaluating whether it’s the right way to maximize learn-
ing while pleasing the customer.

Well, it’s not the best system. It’s selfish and it hurts cus-
tomers. We don’t build MVPs at WP Engine.

The motivation behind the MVP is still valid:

1. Build something small, because small things are
quick and inexpensive to test.

2. Get it into the market quickly, because real learning
occurs only when real customers are using a real
product.

3. Trash it or hard-pivot if it’s a failure, or invest if it’s a
seedling with potential.

MVPs are great for startups and product teams because
they maximize so-called “validated learning” as quickly
as possible. And while customer interviews are useful,

you learn brand new things when a customer actually
uses the product. But MVPs are a selfish act.

The problem is: Customers hate MVPs. Startups are en-
couraged by the great Reid Hoffman to “launch early
enough that you’re embarrassed by your v1.0 release.”
But no customer wants to use an unfinished product that
the creators are embarrassed by. Customers want great
products they can use now.

MVPs are too M and rarely V. Customers see that, and
hate it. It might be great for the product team, but it’s
bad for customers. And ultimately, what’s bad for cus-
tomers is bad for the company.

Fortunately, there’s a better way to build and validate
products. The insight comes by honoring the utility of
MVPs (listed above) while giving just as much considera-
tion to the customer’s experience.

In order for the product to be small and delivered quick-
ly, it has to be simple. Customers accept simple products
every day. Even if it doesn’t do everything needed, as
long as the product never claimed to do more than it
does, customers are forgiving. For example, it was okay
that early versions Google Docs had only 3% of the fea-
tures of Microsoft Word, because Docs did a great job at
what it was primarily designed for, which is simplicity
and real-time collaboration.

Google Docs was simple, but also complete. This is de-
cidedly different from the classic MVP, which by defini-
tion isn’t complete (in fact, it’s “embarrassing”). “Simple”
is good, “incomplete” is not. The customer should have a
genuine desire to use the product, as-is. Not because it’s
version 0.1 of something complex, but because it’s ver-
sion 1.0 of something simple.

https://en.wikipedia.org/wiki/Minimum_viable_product?utm_source=longform.asmartbear.com&utm_campaign=longform.asmartbear.com&utm_medium=post
https://longform.asmartbear.com/fail/
https://longform.asmartbear.com/customer-development/
https://longform.asmartbear.com/customer-development/
https://twitter.com/reidhoffman

 Your customers hate MVPs. Make a SLC instead.

 2 of 3

It is not contradictory for products to be simple as well as
complete. Examples include the first versions of
WhatsApp, Snapchat, Stripe, Twilio, Twitter, and Slack.
Some of those later expanded to add complexity
(Snapchat, Stripe, Slack), whereas some kept it simple as
a permanent value (Twitter, WhatsApp). Virgin Air and
Southwest Airlines both started with only a single route
—small, but complete.

The final ingredient is that the product has to be lovable.
People have to want to use it. Products that do less but
are loved, are more successful than products which have
more features, but that people dislike. The original, very-
low-feature, very-highly-loved, hyper-successful early
versions of all the products listed in the previous para-
graph are examples. The Darwinian success loop of a
product is a function of love, not of features.

There are many ways to generate love. “Minimum” and
“viable” are definitely not among those ways. The cur-
rent-in-vogue way is through design: Elegant UX com-
bined with delightful UI. But there are other ways. The
attitude and culture of the company itself can generate
love, such as Buffer’s blog with its surprising trans-
parency or MeetEdgar’s blog genuinely helping entrepre-
neurs or HubSpot’s blog which early on was at least as
instrumental to their customers’ success as the actual
product. Another way is through a deep connection to
the psyche and work-style of customers, like Heroku who
broke with marketing tradition by filling the homepage
with command-line examples instead of benefit-state-
ments, thereby connecting instantly with their geeky tar-
get customer:

See this article for many more examples of how to gener-
ate love.

From this reasoning, years ago I named what I believe is
the correct alternative to the MVP: Simple, Lovable and
Complete (SLC). We pronounce it “Slick.” As in: “What’s
the ‘Slick’ version of your idea?”

Another benefit of SLC becomes apparent when you con-
sider the next version of the product.

A SLC product does not require ongoing development in
order to add value. It’s possible that v1 should evolve for
years into a v4, but you also have the option of not in-
vesting further in the product, yet it still adds value. An
MVP that never gets additional investment is just a bad
product. A SLC that never gets additional investment is a
good, if modest product.

Although not called SLC, there’s a popular meme in prod-
uct circles that neatly encapsulates the idea of SLC in a
diagram: The Modes of Transportation example from the
Spotify product team:

1

https://blog.asmartbear.com/darwinian-explanation-and-advice-for-going-viral.html?utm_source=longform.asmartbear.com&utm_campaign=longform.asmartbear.com&utm_medium=post
https://blog.bufferapp.com/?utm_source=longform.asmartbear.com&utm_campaign=longform.asmartbear.com&utm_medium=post
https://meetedgar.com/blog/?utm_source=longform.asmartbear.com&utm_campaign=longform.asmartbear.com&utm_medium=post
https://blog.hubspot.com/?utm_source=longform.asmartbear.com&utm_campaign=longform.asmartbear.com&utm_medium=post
https://longform.asmartbear.com/willingness-to-pay/
http://blog.crisp.se/2016/01/25/henrikkniberg/making-sense-of-mvp?utm_source=longform.asmartbear.com&utm_campaign=longform.asmartbear.com&utm_medium=post

 Your customers hate MVPs. Make a SLC instead.

 3 of 3

Critics correctly point out that Tesla did not follow this system
—they didn’t make a skateboard and then a bike and finally a
car, they just made a car. This is a valid critique, when you
know that the only product goal is “car.” Indeed, there isn’t a
SLC version of a car—it’s a leap of faith. Still, human society
did evolve somewhat like this, with basic wheeled objects, later
a bike, and still later a car. Also this model is especially useful
when your startup set out to make a simple product, not even
knowing that a car could exist. Software companies often do
evolve this way; the main text gives a real-world example.

A skateboard is a SLC product. It’s faster than walking,
it’s simple, many people love it, and it’s a complete prod-
uct that doesn’t need additions to be fun or practical. At
the same time, you can evolve the skateboard by adding
a stem and handlebars, to create a scooter—only slightly
less simple, and definitely loveable and complete. Next,
you could grow the wheels, add a seat and some gears,
and you have a bike. Again, less simple but now you have
a product with massive benefits of speed, distance, and
energy-efficiency.

Zooming into one of our examples above, Snapchat took
an SLC progression similar to the transportation
metaphor. The first iteration of the product was a screen
where tapping anywhere took a picture that you could

then send to someone else, at which time it disappeared.
No video, no filters, no social networking, no comment-
ing and no storage—simple, yet Lovable and Complete,
as evidenced by its massive adoption. The insight of “no
storage” was critical, but many people have theorized
that the simplicity of the interface was also critical. The
very fact that it was simple, while not sacrificing love-
ability or completeness, caused its success.

Later they added lots of stuff—video, filters, timelines,
even video cameras inside sunglasses. It’s OK for prod-
ucts to become complex. Starting out SLC does not pre-
clude becoming complex later.

With SLC, the outcomes are better and your options for
next steps are better. If it fails, that’s OK; it’s a failed ex-
periment. Both SLCs and MVPs will sometimes produce
that result because the whole point is to experiment. But
if a SLC succeeds, you’ve already delivered real value to
customers and you have multiple futures available to
you, none of which are urgent. You could build a v2, and
because you’re already generating value, you have more
time to decide what that should look like. You could even
query existing customers to determine exactly what v2
should entail, instead of a set of alpha-testers who just
want to know “when are you going to fix this broken
thing?”

Or, you can decide not to work on it. Not every product
has to become complex. Not every product needs new
major versions every two quarters. Some things can just
remain simple, lovable, and complete.

Ask your customers. They’ll agree.

Printed from: A Smart Bear
https://longform.asmartbear.com/slc/
© 2007-2024 Jason Cohen @asmartbear

1

https://longform.asmartbear.com/fail/
https://longform.asmartbear.com/slc/
https://twitter.com/intent/user?screen_name=asmartbear

