
 Put down the compiler until you learn why they’re not buying

 1 of 3

Put down the compiler until you learn why they’re not buying
by Jason Cohen on September 21, 2009

Technical founders, step away from the code. Gather
insights from non-buyers, rather than just adding more
features.

New companies rarely have a problem writing code.

The problem they have is: We don’t have enough sales.

Some actual quotes (sound familiar?):

“We have 300 downloads and no sales.”
“People tell me I have a great idea, but none of them
bought my software.”
“My sales/download conversion ratio is 1%. It should
be 8%.”
“Folks are signing up for an account but they don’t
come back.”

Of course everyone wants “more sales,” but I’m specifi-
cally talking about the early stage of your company, when
your v1.0 is shaky but has enough features that it should
be more viable than it is. When your website copy is
good enough that people are willing to sign up or down-
load, but the sales aren’t coming in like they ought.

This problem is solved only one way: You need feedback
from lost sales.

Empirical data, not your own ideas about why people
might not be buying.

You need to talk with the people who were interested
enough to find your website, read your marketing copy,
download your product, and then give up without even an
email. That’s the low-hanging fruit; those are the people
who are in your grasp, who should be buying today, but
aren’t.

They’ve self-identified as your ICP, yet your product didn’t
fulfill the promises you made.

As Steve Johnson says, “All the answers are outside the
building.” (Watch his one-hour presentation on the sub-
ject at the Business of Software 2008 Video Archive.)

Or as Eric Ries says, “Not listening is the cardinal sin
… Any other mistake can be overcome: shipping bad
product, removing key features, erroneously banning
community members, even kicking out a whole segment
of customers.”

But I find that entrepreneurs—especially technical ones
—fight me on this tooth and nail. And I’m not surprised
because, as usual, I too used to hold the I-already-
know-why, I-know-my-customers-better-than-they-do
attitude.

So once and for all, I’d like to dispense with the usual ar-
guments against getting feedback:

Existing customers are telling us to do X, so we
should do X.
Customer requests are important and you must follow
their lead, especially in the beginning. But what about
the 98% of trial users who didn’t buy? It is they who
hold the keys to more sales! Existing customers
bought in spite of barriers to sale, so they’re no help in
identifying the barriers. Listen to them to increase
your product’s value, but listening to them to increase
sales is classic survivor bias.

https://longform.asmartbear.com/icp-ideal-customer-persona/
http://www.pragmaticmarketing.com/?utm_source=longform.asmartbear.com&utm_campaign=longform.asmartbear.com&utm_medium=post
http://businessofsoftware.org/2008/01/steve-johnson-at-business-of-software-2008-why-software-is-not-a-business/?utm_source=longform.asmartbear.com&utm_campaign=longform.asmartbear.com&utm_medium=post
http://www.startuplessonslearned.com/2009/09/cardinal-sin-of-community-management.html?utm_source=longform.asmartbear.com&utm_campaign=longform.asmartbear.com&utm_medium=post
https://longform.asmartbear.com/survivor-bias/

 Put down the compiler until you learn why they’re not buying

 2 of 3

What we need is New Feature X, then people will
buy.
This is almost never true. The world is filled with suc-
cessful v1.0 products that lacked obvious features; in
fact I challenge you to find an exception. Ben
Yoskovitz wrote a great post about this fallacy (with
27 concurring comments). Even Nintendo says “the
most important feature is the one no one asks for.”

We need to clean up the software before we can
get real feedback.
At Smart Bear, the first incarnation of our code review
product was so hard to decipher, I can’t understand
how we got customers. They used it in spite of the
problems, not because of them. If you’re solving a gen-
uine pain, people will try the software, complain
about it, ask for features, and generally be engaged; if
that’s not happening, you’re not solving the right prob-
lem or not making that obvious, and that is critical to
getting revenue.

Have you ever worked on a software project for many
years and then lived through a face-lift? After you’re
used to the new look, you’re just embarrassed when
you see the old version. It’s the natural order of
things. Polish isn’t important if you don’t have enough
revenue.

I’m a user myself, so I know what’s missing.
That’s great, but all that means is that you have 100
ideas for new features, but “more features” is almost
certainly not the problem. It means is you have a “vi-
sion” which is almost certainly not how your company
is going to unfold.

Often the real impediment to sales is as mundane as
“New users are presented with a blank screen, so they
don’t know what to do next, so they abandon the
trial,” or “The installer doesn’t work properly under
Vista, so people give up.” The fact that you’re a user
yourself is the worst position for you to be in because
you can’t be objective about the new user experience,

and you can’t put yourself in the shoes of a user pos-
sessing below-average intelligence. Which half of
them possess.

There, I said it. Most of your users are dumb; almost
all are dumber than you are. You are not your typical
user.

Apple just knows what’s cool. So do we.
This is a common misconception, easy to believe be-
cause Apple does keep product development close to
the vest. However, it’s completely untrue. Steve Jobs
specifically talks about getting feedback from
customers.

We can’t afford to delay the v#.# release.
If you have no real evidence that revenue will sudden-
ly improve with the next release, why do you think it’s
important to release it? Just because it has “more
stuff?” The only reason to be excited is because it’s dif-
ferent, and since the status quo isn’t working, you’ve
got to try something different. But is that “stuff” why
people are downloading but then abandoning? Until
you can answer that question with empirical data,
there’s no reason to believe the new stuff will be more
compelling than the last stuff.

Getting revenue is a marketing/sales function; I
need to be heads-down in the code.
In a startup, it’s everyone’s job to get revenue. Sure,
the usual day-to-day activities should be divvied up
between founders; not everyone needs to write letters
to bloggers and be glued to Twitter live-search. But if
you don’t know why people aren’t buying, that’s the
#1 bug and the #1 feature you need to be working
on. There’s lots of ways (see below) to change the
product or website in under a day that will begin fix-
ing the problem. Saying “it’s marketing’s job” really
means “I’m not going to help get revenue.”
Unacceptable.

Hopefully by now you’re convinced to get more feedback
from lost sales, but how do you go about doing it?

http://www.instigatorblog.com/false-promise-one-more-feature/2009/08/25/?utm_source=longform.asmartbear.com&utm_campaign=longform.asmartbear.com&utm_medium=post
https://web.archive.org/web/20090228020253/http://www.time.com/time/magazine/article/0,9171,1191861-1,00.html
https://longform.asmartbear.com/predict-the-future/
http://venturehacks.com/articles/jobs-customer-development?utm_source=longform.asmartbear.com&utm_campaign=longform.asmartbear.com&utm_medium=post

 Put down the compiler until you learn why they’re not buying

 3 of 3

Here I’ve posted eleven specific ways to get more feed-
back, almost all of which take less than a day to
implement.

And here’s I’ve described my system for creating ques-
tions and conducting customer interviews that I’ve used
to build two unicorns.

So you have no excuse.

Printed from: A Smart Bear
https://longform.asmartbear.com/put-down-the-compiler/
© 2007-2024 Jason Cohen @asmartbear

https://longform.asmartbear.com/more-sales-customer-feedback/
https://longform.asmartbear.com/customer-development/
https://longform.asmartbear.com/put-down-the-compiler/
https://twitter.com/intent/user?screen_name=asmartbear

