
Distributed Logical Time

Objectives & Definitions · LT inside a single replica ·
“Happened-Before” relation between replicas ·

Using Skew to fix the future · Simulations · Problems ·
Anti-Objectives

Time is notoriously difficult to synchronize in distributed systems. Many
algorithms require—or have better characteristics when—any number of
independent replicas achieve a single global time-ordering. In particular,
it is useful to know that if two events are separated by more than a few
seconds in real-time, that they will be correctly ordered, despite replicas
having unsynchronized physical clocks.

We’re obviously in no danger of
arriving at consensus.”

—Warren Buffett

“

credit 1

However, operating system clocks are undependable and can even
move backward. Furthermore, we don’t want to rely on a “master” or
central server. Replicas should be able to arbitrarily join or leave a col-
lective without announcement, operate independently, and communicate
with each other peer-to-peer, in any pattern.

Common methods to solve the problem either involve custom infra-
structure to achieve tight bounds on the behavior of operating system
clocks (e.g. Google TrueTime2), or some sort of distributed logical clock
such as Vector Clocks.3 The former is unavailable to most of us, especially
if we want our code to run in browsers or laptops or non-Google data
centers. The latter suffers from unbounded memory requirements and still
results in “conflicts” which are resolved arbitrarily or not at all.

Here we present an algorithm and Golang implementation that meets
the objectives, with no assumptions about the behavior of operating
system clocks, without vector clocks, and without central coordination.

DISTRIBUTED LOGICAL TIME · 2

OBJECTIVES & DEFINITIONS

It’s useful to establish a few definitions and conventions before describing
how we achieve a solution:

• RT—Real Time—theoretical omniscient “actual” time. Imagine it as
arbitrarily-high-precision UTC time exactly synchronized everywhere.
This is not a quantity that any replica can compute; it is for algorith-
mic discussion only.

• PT—Physical Time—the time reported by the operating system. This
is the only notion of “time” that a replica can access.

• LT—Logical Time—our implementation of “time,” with the properties
outlined above and precisely defined below.

• XT{expression} means “the type of time XT, applied to the rep-
licas or events in the expression.” For example, PT{ P<Q } means
“the Physical Time on the replica P is less than the Physical Time on
replica Q.”

With this terminology, we can define our assumptions and our require-
ments for LT precisely:

1. PT is arbitrary. It can move backwards, it does not produce unique
values, it might update only rarely, it is never synchronized between
two replicas, it can be ahead of or behind RT by an arbitrary and vari-
able amount. The only thing we know is that, over a long duration, it
generally increases.

2. LT always increases. Whenever LT is requested, it will have
increased since the previous request (regardless of PT’s behavior).

3. If B happens after A in real-time, i.e. RT{ B>A }, but A and B
happen on different replicas:

3 · A SMART BEAR

4. Correctly ordered in LT when sufficiently time-separated in RT. If
RT{ B-A } > e, where e is a small, bounded constant, then LT{

B>A } also.
5. Arbitrary LT order if close together in RT. If RT{ B-A } < e,

then there’s best-effort for LT{ B>A }, but it could be LT{ B<A }.
6. e is small and bounded. e must be small (e.g. 1-2 seconds), and be

a constant, not proportional to some state or configuration. e is the
time window inside which we accept events that are incorrectly
ordered, so we require this window to be small.

7. “Happened-before” relation is always correctly ordered in LT. If A
happens, then the two replicas communicate, then B happens, then it
is always true that LT{ B>A }, even if RT{ B-A } < e.

8. Skewed PT on one replica doesn’t skew the behavior of the collec-
tive. If one replica’s PT differs significantly from RT, it should still
participate properly with the collective; for example it shouldn’t auto-
matically “win” due to the late-skewed PT, or be unable to write a
change due to early-skewed PT.

9. LT uses constant memory. Use a fixed number of bits to represent
LT, regardless of factors like the number of replicas. (Unlike Vector
Clocks.)

10. Decentralized, without “join” or “leave” events. No masters, no
central API. Peers can communicate in arbitrary patterns. Peers never
need to announce their joining or leaving the collective. There is no
list of peers.

It may sound impossible to achieve the goals of LT given that RT is
inaccessible, PT lacks all the properties we need, and replicas aren’t syn-
chronized. It’s fun to see how it can in fact be achieved.

DISTRIBUTED LOGICAL TIME · 4

LT INSIDE A SINGLE REPLICA

It might seem trivial to create LT within a single replica, but even that
requires an algorithm. Typically the operating system is used for PT, but
that can move backwards (e.g. with NTP, with leap-seconds, with manual
settings), and is non-unique (e.g. asking for the time in rapid succession
often yields the same value from the operating system, due to CPUs being
faster than the precision of time), and can drift significantly far away from
RT (due to various causes as in these examples4).

PT will generally increase in the long-run, but we have to “smooth
over” the bumps where it is stagnant or decreasing. To do that, we store
the “last-seen PT,” and also a counter, and use the following algorithm
(plus a mutex for concurrent access):

func GetLT() {
if PT_Current > PT_LastSeen {

PT_LastSeen = PT_Current
Counter = 0

} else {
Counter = Counter + 1

}
return {PT_LastSeen, Counter}

}

LT is ordered first by PT_LastSeen and then by Counter. So, as
long as PT increases, we use it, staying hopefully somewhere near RT
(more on this later), but if PT does not increase, the Counter ensures that
LT still increases.

In the following simulation from our golang implementation, we can
see how LT monotonically increases even when PT doesn’t (Figure 1).

The use of a counter also means the precision of PT is not impor-
tant. Therefore, a performance optimization is to use a recurring timer to
update a thread-safe global variable with PT 1-4 times per second, rather
than invoking the much more expensive and blocking operating system
call to retrieve PT every time we compute LT. With this optimization, we

5 · A SMART BEAR

Figure 1

achieved tens of millions of invocations per second even in a Javascript
implementation on a typical laptop.

“HAPPENED-BEFORE” RELATION
BETWEEN REPLICAS

Suppose an event A happens on a replica P, and then P communicates with
another replica Q, sending that event. Afterwards, an event B happens on
Q. We want to be certain of LT{ B>A }, even though A’s LT was gener-
ated on P and B’s LT was generated on Q. (See diagram below)

The PT of P and Q will differ, and could differ in either direction. If PT{
Q>P }, then we’ll get LT{ B>A } naturally, because the PT component
of Q is already ahead of the PT component of P. That’s the easy case.

In the other case that PT{ P>Q }, we have a problem. In the ex-
ample below, P’s PT is one minute ahead of Q’s. After P sends Q event A
with LT{ 71.0 }, Q’s LT is still far behind, which means when event

DISTRIBUTED LOGICAL TIME · 6

Figure 2: Problem: B’s LT isn’t later than A’s LT, be-
cause they’re on different servers.

B happens one second later, it is LT{ 13.0 }, resulting in the problem
LT{ A>B } even though RT{ A<B } (Figure 2).

To fix this, we simply set both components of Q’s LT equal to P’s. Q will
know to do this, because when P communicates with Q, it transmits its
current value of LT. The following algorithm ensures Q will end up with a
strictly-larger LT:

func UpdateLTFromPeer(LT_Peer) {
// Operate on current LT
LT_Local = GetLT()
// Take the latest LT
if LT_Peer > LT_Local {

LT_Local = LT_Peer
}
// Ensure strictly larger than any previous LT
Counter = Counter + 1
// This is the new local LT
SaveState(LT_Local)

}

A side effect is that Q’s PT_LastSeen will be ahead of its own PT,
but that’s fine because Q will just use its Counter until its own PT catches
up. Meanwhile, PT{ B>A } is guaranteed, as the diagram now shows
(Figure 3).

7 · A SMART BEAR

Figure 3: Solution: Q appropriates P’s LT, because
LT{ P>Q }

Further discussion and a proof of correctness can be found in the
paper that invented this method,5 in which it is called a Hybrid Logical
Clock (HLC).

USING SKEW TO FIX THE FUTURE

Although the algorithm above satisfies many of the requirements of LT, it
violates the requirement that e be small and bounded.

To see why, let’s extend our example to consider what happens with
subsequent events on P and Q. In particular, P generates an event C soon
after B (in RT), and then Q generates an event D about thirty seconds
after that (Figure 4).

We’ve highlighted the problem: LT{ C>D }, even though RT{ C<D

}. The cause of the problem is displayed in the diagram: Because Q’s PT
is so far behind P’s, Q has to use its Counter to increment its LT, but
meanwhile P is incrementing its LT using its PT. In fact, every event on P
during the minute after P communicated with Q will have an LT greater

DISTRIBUTED LOGICAL TIME · 8

Figure 4: Problem: PT clock-skew breaks LT ordering of future events C
and D, even though they differ by 30 seconds in RT

than every event on Q during the same interval, regardless of their order-
ing in RT. This is the condition described in our original LT goals where
events can be mis-ordered in LT if they happen closer than a duration e.
The trouble is, e is too big (it’s one minute in this example) and it’s not
bounded (it could just as easily be one hour).

This situation remains even after Q’s PT catches up with the synchro-
nization event. P’s LTs will always have a larger PT component than Q’s
LTs, and thus P’s events (within any one-minute time window) will always
look like they are later than Q’s in LT, regardless of their order in RT.

One solution is to mandate small PT clock skews, which in turn man-
dates that e is small. For example, a basic NTP service can keep clocks
synchronized to within tens of milliseconds. In this case the effect in our
example would still exist, but only inside a tiny time window of tens of
milliseconds, not a full minute. That would be acceptable.

However, our implementation does not assume control over PT. A
replica might be a browser or laptop that we don’t control, or a virtual
machine that isn’t running NTP. So, we need an algorithmic extension that
eliminates this problem of PT clock skew.

9 · A SMART BEAR

The solution is for Q to compute the PT clock skew, and use that as
an offset to its native PT to stay reasonably up-to-date with P. This can-
not be done precisely, because of the non-measurable and often-variable
communication transmission delay between P and Q, and because PT isn’t
dependable, but it turns out being precise is not necessary.

When P communicates its LT to Q, Q computes s = PT{ P-Q } as
the “skew.” As the diagram below illustrates, s will always under-estimate
the actual clock skew, because it’s not taking transmission-time d into ac-
count. In our example here, the actual clock-skew is 60, but the computed
skew is 59 due to the transmission delay d=1.

When s is positive, Q saves s. The next time PT is computed, Q uses
PT{ Q } + s as physical time. This means Q’s idea of physical time is
now only d behind P. This nullifies the problem in our example (Figure 5).

If s is negative, it is ignored; this ensures that clocks that are already
ahead do not get even further ahead.

Although in practice d is not measurable and fluctuates, it is always
non-zero, and rarely larger than a few seconds. It is proportional to net-
work transmission time, not proportional to PT clock skew or any other
system state or configuration. Therefore we can say that s always under-

Figure 5: Solution: Use an approximation of real clock skew to
reduce the time-window of out-of-order LTs

DISTRIBUTED LOGICAL TIME · 10

estimates skew, and by a bounded amount on the order of the replica’s
communications delay (i.e. 1ms inside a data center, 100ms across a
country, or 1000ms across the world).

Finally, observe from the diagram that the time-window in which this
problem can occur has been reduced to just 1 second, i.e. reduced to d.
Indeed, e from our LT goals is exactly d theoretically, and on the order
of d practically, which we just said was less than a few seconds. Thus, we
have achieved the objective that e be a bounded constant.

What happens when all replicas’ PTs are in fact well-synchronized,
e.g. with an error less than d, which is easily achievable with well-known
algorithms like NTP, or modern phones and laptops that synchronize their
clock with GPS? Then the computed skew will be less than zero. To see
why, consider that [computed skew] = [real skew] - d, but in
this hypothetical, [real skew] might be 50ms whereas d is typically
greater than that. Negative computed skews are ignored, thus we’ll always
have s = 0.

Although this is not a specific requirement on the behavior of LT, it
does satisfy an intuitive desire for skew-correction to vanish when it isn’t
needed.

If a replica’s PT is substantially earlier than RT, it will develop a large
forward skew, neutralizing the problem. If a replica’s PT is substantially
later than RT, all other replicas will develop a skew that aligns with it.
Therefore, we achieve the objective that significant skews in either direc-
tion don’t adversely affect operation of those replicas or of others.

Still, a replica with a large PT-RT will create a large skew value for
the whole group, with the legal but undesirable effect that PT + s differs
significantly from RT. When that happens, it’s important that skews don’t
continue to creep up, with each replica edging the others forward. A non-
zero value of d helps; in our implementation we add another 500ms to
the effective value of d to ensure this effect.

11 · A SMART BEAR

SIMULATIONS

The following simulations were generated from our Golang implemen-
tation.

Convergent LT, with staggered PT
With replicas starting with PT staggered every 10-seconds, one-way-
synchronizing a random pair once per second, they monotonically increase
and eventually converge on the one with the latest LT (Figure 6).

Convergent LT, with variable-rate PT
With each replica’s PT clock running at a different rate relative to RT, one-
way-synchronizing a random pair once per second, all replicas keep con-
verging close to the one with the latest LT, i.e. the fastest clock (Figure 7).

Far-Future replica joins, then leaves
A replica with a far-future date joins; all replicas converge on the new far-
future LT by one-way-synchronizing a random pair once per second. The
“bad” replica then leaves the collective. The remaining replicas have large

Figure 6

DISTRIBUTED LOGICAL TIME · 12

Figure 7

Figure 8

skews, which should not change. In particular, they should not “creep up”
in skew (Figure 8).

13 · A SMART BEAR

PROBLEMS

LT at start-up
When a replica first starts up, it will have an LT that is likely to need skew-
correction. It should “fix” its LT prior to using it in a meaningful way.

One fix is to communicate with any other replica; this will bring it up
to speed and set an appropriate skew.

Another fix is to persist the LT state between runs of the replica. In
particular, saving the skew value. However, this is not as good as commu-
nicating with a live replica, because the behavior of PT or the collective
value of the skew might have changed since the previous run.

Using LT without doing those things is still legal and self-consistent,
but will generate events that will appear to be older than they actually
are, relative to other events being generated by other replicas around the
same RT.

ANTI-OBJECTIVES

The following are not goals. In some cases the algorithm gives best-effort
to achieve them anyway. In some cases there are things the library user
can do to opt-into having that goal, possibly at the expense of another
goal or constraint.

Uniqueness
The algorithm above creates locally-unique values (i.e. monotonically-
increasing), but not globally-unique (i.e. two replicas can generate the
same LT).

DISTRIBUTED LOGICAL TIME · 14

Uniqueness can be useful because it allows LT to also serve as a “name”
of an event in logs or databases.

It’s easy to add uniqueness. Just add more (least-significant) bits to
the LT structure. Set them equal to something unique to a replica. This
can be a replica ID that is unique in the world, since the rest of the Time
components will never be generated again on that replica. Or it can be a
sufficiently large number of random bits.

It may seem like collisions are already unlikely, however they are
common under certain assumptions, namely if PT is coarsely updated and
d is very small. Consider the example above, but rather than d=1, assume
a fast network where d=0.001 but a PT source that updates only once
per second (on a timer, say). Once P and Q share LT, they will be identical
at the same point in RT, and stay synchronized thanks to s. So they will
likely collide if both generate an LT inside the same RT second.

Keep PT close to RT
It’s nice if PT stays close to RT, but it is not a requirement.

You can achieve this, in fact making the difference bounded, if you dis-
able skew. This keeps PT close to RT but results in a potentially large e,
and thus you get mis-ordered events. If you accept this trade-off, you can
ensure PT never strays too far from RT, as proved in the the HLC paper5

referenced above.
To achieve this while not giving up the objectives on the small size of

e, you can use NTP or a similar service to keep PT close to RT.

In the end, the algorithm is simple, and perhaps even obvious in retro-
spect. The best things are. Simplicity is a core requirement for scalability
and truly bug-free code. We hope these properties result in people using
this technique.

15 · A SMART BEAR

The current version of this article:
https://asmartbear.com/distributed-logical-time/

More articles & socials:
https://asmartbear.com

© 2019 Jason Cohen

DISTRIBUTED LOGICAL TIME · 16

References

1. https://andertoons.com/time/cartoon/7579/behind-schedule-on-time-
machine-catch-up-once-finished

2. https://cloud.google.com/spanner/docs/true-time-external-consistency
3. https://en.wikipedia.org/wiki/Vector_clock
4. https://stackoverflow.com/questions/4770635/s3-error-the-difference-be-

tween-the-request-time-and-the-current-time-is-too-la
5. https://www.cse.buffalo.edu/tech-reports/2014-04.pdf

