
 Maybe not so much with the “optimization”

 1 of 3

Maybe not so much with the “optimization”
by Jason Cohen on April 5, 2010

This weird-looking thing is a result of discontinuous innovation,
not incremental improvement.

In the never-ending quest for optimization, A/B tests,
metrics, and funnels, we’re in danger of losing the fun
and value of creative work.

When we demand overwhelming customer outcry before
committing to the slightest product change, we’re in dan-
ger of losing the value of creating a cool feature that
takes too much effort but people just love.

When we do the minimum necessary to get the job done,
we’re efficient but not thrilling. We’re “lean” but we’re
not stirring hearts. We’re effective but not playful.

I’m as excited as everyone else about Lean principles
gaining traction, and sure most companies are erring on
the side of too little objective feedback rather than too
much. Still, every article I read turns the creative process
of business and product design into Vulcanian objectivity.

Sometimes, you should do something just because it’s
cool. There’s such a thing as product “taste.”

Look at this incredible display of affection IHumanable
has for his computer:

This is one of the reasons I love my new iMac, it’s just
a beautiful magic floating screen filled with win.

You couldn’t ask for a stronger endorsement. This is even
better than “It saved me $725,231.” This is beyond utility
—this is love. (Love wins.)

Does love come from feature bullet points? Do you earn
love through A/B tests and implementing features off the
top of GetSatisfaction? Or is this something else, some-
thing deeper, something less incremental, less data-
driven, more gut feel, more emotional?

My first product at Smart Bear had a non-optimal, float-
ing-in-win invention called the “mini-viewer.” Here’s its
story.

Code Historian was my first product. It was the first file
difference viewer with built-in support for version control
systems, letting you view various historical versions of a
file side-by-side. You could switch between which ver-
sions you were comparing with one click:

The thing to focus on is that user interface element in the
bottom-right corner. That’s the “mini-viewer,” and in
every measurable sense it’s a terrible business
decision.

https://longform.asmartbear.com/slc/
https://longform.asmartbear.com/put-down-the-compiler/
https://web.archive.org/web/20100408174137/http://ihumanable.com/blog/2009/12/minimalism/
https://longform.asmartbear.com/willingness-to-pay/
http://smartbear.com/?utm_source=longform.asmartbear.com&utm_campaign=longform.asmartbear.com&utm_medium=post

 Maybe not so much with the “optimization”

 2 of 3

The mini-viewer summarized the modifications—the
lines added, changed, and removed—so the user could
easily see how many changes there were and where
they’re located. Sounds useful, right?

Right, except it’s a really wasteful, expensive way to do
it. Many competitors used a different technique I call
“boogers,” because to me it looks like someone shot snot
rockets all over the screen, and also because it’s fun to
deride competitors, because it feels good to make fun of
other people who (appear to) have more revenue than
you do.

But don’t you agree they look like boogers?

The boogers are smeared by the scrollbar, indicating
where you’d need to scroll to see differences between the
two versions of the file.

Now by all of the usual arguments for Lean, Agile, and
minimimalism, I should have used boogers too:

1. Boogers were already semi-standardized. User
interfaces should follow the principle of “least
surprise”—if people are used to a certain metaphor,
icon, or behavior, you should honor that so people
understand your product immediately. No one else
had a mini-viewer.

2. Boogers occupy minimal screen real-estate. It’s just a
thin strip no wider than a scrollbar; in fact some
products put the boogers on top of the scrollbar. The

mini-viewer is not only larger, it has significant
width, which means you have to occupy the rest of
the right side of the screen with other crap.

3. Boogers appear right next to the scrollbar, which is
where you look anyway when navigating the file.

4. Boogers take less effort to compute than the
algorithm for determining color variations in the
mini-viewer.

5. Boogers take less effort to draw. Boogers are drawn
on the screen once, and don’t change unless the
window is resized—an infrequent operation. The
mini-viewer however indicates your current scroll
position in the file (those black brackets) so when
you’re scrolling around the file the speed at which
you can recompute and redraw the mini-viewer
matters. Drawing directly on the screen causes
flickering, so you need off-screen buffering. In short,
the mini-viewer is a lot more programming effort
with a lot more chance for bugs.

6. The mini-viewer doesn’t convey more information
than boogers do.

And yet, everyone loved the mini-viewer. People sent
emails saying they used Code Historian just because of
the mini-viewer. Some developers wrote in asking how I
was able to render it so efficiently. It was always a high
point in product reviews.

The mini-viewer was wasteful, but fun. It wasn’t optimal
and had no measurable benefit to usability, but it was
“filled with win.” It took extra effort but it was endear-
ing—an important attribute not easily captured with
metrics and spreadsheets.

Now sure, there are many of aspects of business and
product development where it’s best to stop obsessing
and just cut corners. Often we can and should accept
80% of the benefit if it means 20% of the effort.
Customers generally prefer the right features over more
features.

 Maybe not so much with the “optimization”

 3 of 3

But sometimes it’s your job to fill the screen with joyous win.

Printed from: A Smart Bear
https://longform.asmartbear.com/creativity-over-optimization/
© 2007-2024 Jason Cohen @asmartbear

https://longform.asmartbear.com/creativity-over-optimization/
https://twitter.com/intent/user?screen_name=asmartbear

